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ABSTRACT
We discuss the use of formal discrete-event modelling and simulation for networking applications,
in particular, for mobile networks and Wireless Sensor Networks (WSN). We show how one can
develop discrete-event model libraries based on the DEVS formalism for mobile networks, allowing
tracking the users’ upload status in a given area of coverage, while using a non-cooperative
algorithm or Coordinated Multipoint (CoMP) synchronisation. We show a DEVS model library for
CoMP-based networks, showing how control messaging can be managed among Evolved Node
Base stations (eNBs). We build a case study comparing two CoMP approaches: Joint Processing (JP)
and Coordinated Scheduling (CS). Finally, we show how DEVS models can be used to model
malware propagation in wireless sensor networks based on epidemic theory.
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1. Introduction

In recent years, communication networks have
become ubiquitous, and their use has increased stea-
dily. In particular, wireless networks such as mobile
networks and wireless sensor networks have become
extremely popular, as they have reduced cost and
provide mobility. Wireless networks have attracted
billions of users and it is one of the most valuable
markets: a study shows that almost 98% of house-
holders in the USA use wireless services, and nearly
49% of these use wireless services only (Cellular
Telecommunications Industry Association [CTIA],
Cellular Telecommunications Industry Association,
2016a, 2016b). Ericsson (2016) shows that the global
mobile subscriptions reached 7.3 billion in 2015.
Different organisations, companies, research groups,
inventors are working together to introduce new ser-
vices and techniques with better performance to
attract a greater number of users into their territories.

All these efforts have one issue in common, and
that is the need for being evaluated. In some cases,
analytical evaluation has been used, but analytical
methods are usually limited as they can solve simpli-
fied versions of complex networking problems and
their underlying protocols. For instance, it is difficult
to model phenomena such as channel propagation
properties, node mobility, and radio characteristics
using analytical methods. Nevertheless, having a set
of models that could be used to study unfamiliar
problems is useful for reasoning and expert validation.
Therefore, many authors build models that can be
later simulated for analysing the properties of the

networks. Building and using model libraries would
allow one to reuse the models but reusing models to
extend and adopt them for new proposed solutions is
also complex. In order to develop these models’
libraries, one needs a flexible approach to model the
target systems.

The use of formal simulation techniques in the field
of discrete-event modelling has shown to be a suitable
candidate for presenting complex systems such as
mobile networks or wireless sensor networks (WSN)
(Tavanpour et al., 2015, 2014). This problem-solving
technique has a number of advantages for modelling
and Simulation (M&S) of such complex systems.

Here, we will discuss the definition of an architec-
ture, models, and libraries for modelling wireless net-
works based on the Discrete-EVent system
Specification (DEVS) methodology (A. G. Wainer,
2009; Zeigler et al., 2000). The use of DEVS supplies
various advantages. As DEVS specifies formally the
network and protocols, we can reason on the models
without worrying about the simulation artefacts (that
could run in single processors or parallel computers
without modifications). These discrete-events system
specifications use a modular description for the mod-
els, which makes information hiding simple, and the
quantitative complexity of the problems is attacked
using a hierarchical approach, allowing the reuse of
tested models, improving the safety of the simulations
and allowing to reduce the development times.
Consequently, we can build model libraries with com-
ponents that can be easily reused, as shown in this
article. The modularity and formal I/O port
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definitions of DEVS allow easy interaction and com-
position with a variety of environment models, tools,
GIS software, data sets, and visualisation mechanisms,
both locally and remotely. Another advantage is that
the formal model can be checked formally, improving
the error detection process and reducing testing time.
Similarly, DEVS models are timed models, making the
definition of timing properties in the protocols, net-
work, and devices, easy to define, and the simulation
software provides verification tools to improve the
timing analysis mechanisms. Finally, integration with
models defined with other modelling techniques is
simpler, allowing one to mix, for instance, complex
traffic or pedestrian models and combine them with
the communication protocols discussed in this article
(A. G. Wainer, 2009; Zeigler et al., 2000).

In (Wainer et al., 2013), we presented some generic
ideas related to this research; here we focus on
advanced models based on more complex protocols,
and we focus on different methods and a new a library
for modelling these advanced models. We discuss our
proposed architecture and tools and introduce case
studies for studying Coordinated Multi-Point
(CoMP) and malware propagation in mobile networks
and wireless sensor networks.

These case studies allow us to focus on some critical
issues for future mobile networks. For instance, in
mobile networks, supplying consistent high data rate
service for users should be achieved regardless of their
location in the coverage area. Providing such a service
for the cell-edge users is complicated due to higher
signal attenuation and interference at the edge. CoMP,
a method introduced in the fourth Generation of
mobile networks (4 G), was introduced to deal with
this problem. CoMP considers a set of Base Stations
that work together to reduce the interference and
increase the signal-to-noise ratio. In the case of wire-
less sensor networks, the problems are also complex;
for instance, energy efficiency and security are major
concerns. We will focus on a case study of malware
and its propagation in WSN, which could lead to the
draining out of the energy resources of the sensor
nodes, which eventually leads to network breakdown.

The rest of the paper organised as follows. In
Section 2, we provide a brief overview on the wireless
network concepts that we are going to model in the
next sections. We also discuss some of the simulation
tools and the related works. Moreover, we discuss the
DEVS methodologies. In the following sections, we
present different case studies in wireless networks
using CD++, an open-source M&S platform for
DEVS (A. G. Wainer, 2009). In Section 3, we present
a model to track mobile users’ upload process, while
they are using either a non-cooperative algorithm or
CoMP to upload one data file. In Section 4, we present
a DEVS model for different CoMP architectures. We
show how eNBs establish coordination sets and serve

User Equipment (UE) jointly to improve cell-edge
performance. In Section 5, we present another model
on malware propagation in WSNs based on epidemic
theory. This model shows the dynamics of malware
propagation in wireless sensor networks as well as how
the malware propagation effects the energy consump-
tion of a sensor node.

2. Background

The use of mobile networks (also called cellular net-
works) is ever increasing, and the study in Ericsson,
2016 shows that the global mobile subscriptions will
reach 9 billion by 2021. This massive number of users
will generate more data traffic, and the total monthly
mobile data traffic is expected to reach 52 EB in 2021.
Service providers need to address these demands,
which are derived from two sources: a large number
of devices to provide service and their high data rate
demands.

In recent years, various efforts have focused on
improving the performance of mobile networks,
focusing on these two problems. Providing high data
rates to devices in all coverage areas is challenging,
especially when a device is located near to a Cell
Tower’s border. This group of users has two problems.
The first one is the long distance from the Cell Tower’s
centre, where their serving Base station (also called
evolved Node B – eNB) is located. The second one is
the higher interference from the neighbouring Cell
Towers. Mobile network standards, such as LTE-A
(LTE-Advanced), use different techniques to meet
the expectations of the Cell-edge users. One of such
methods, called Coordinated Multi Point (CoMP),
considers a set of eNBs (called the coordination set)
that work together to reduce interference and enhance
the signal strength received (Tavanpour et al., 2015).

In recent years, not only cellular mobile networks
have become popular; in recent years Wireless Sensor
Networks have become more and more popular (and
now there are important efforts deploying such net-
works combined with sensors in wired and wireless
environments focusing on the Internet of Things).
These networks have also various problems that need
to be addressed. A WSN is a self-configuring network
that consists of several sensor nodes distributed in the
environment to sense the physical world. These small
sensor nodes use radio signals to communicate with
each other. The key advantage of WSN is their ability
to bridge the gap between the physical and logical
worlds, by gathering information from physical
world and communicating that to powerful logical
devices that can process it (He et al., 2004). Also,
from the design prospective, we need to keep in
mind that the sensor nodes have some constraints
such as computing power, limited energy, bandwidth,
communication range, etc. Overall, this kind of
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wireless network also became popular, and nowadays,
they are being used in a wide range of applications
such as environmental monitoring, healthcare sys-
tems, smart homes, smart cities, military surveillance,
industrial monitoring, traffic control, etc. As we can
see, many of these networks are used in critical appli-
cations where threats to the security of the network
cause serious incidents for lives or assets. In particular,
malware software can disrupt the operation of such
systems.

To address these issues innovative technologies,
protocols, and algorithms are needed, and we need
to evaluate these novel approaches properly before
deploying them. Modelling and Simulation (M&S) is
a good method to evaluate these methods as well as
their interaction with the existing subsystems under a
wide range of scenarios, as in most cases we cannot
conduct extensive experimentation.

Robust M&S tools are thus important to deal with
these issues, and in recent years, there have been
various network simulation tools introduced. For
instance, OPNET (Hammoodi et al., 2009; Koksal,
2008; Xian et al., 2008) is a high-level discrete-event
simulator (built using object-oriented programming
in C++) which provides a development environment
for the users. The users can design and model different
approaches in terms of protocols, devices, etc. OPNET
supports a wide range of network types and technol-
ogies (i.e., optical, wireless, satellite, LAN, WAN), as
well as various protocols. It provides a graphical user
interface for easy development of the network model.
Nevertheless, it is closed source, costly, and it is diffi-
cult to develop specific components.

Another popular discrete-event simulator for net-
works is called Network Simulator Version 2 (NS2)
(Kamoltham et al., 2012; Rajankumar et al., 2014).
NS2 libraries support the simulation of various net-
work protocols over wired and wireless networks. NS2
is based on two languages: C++ and OTcl. The latter is
an object-oriented extension of Tcl, and it is being
used for the topology definition and controlling the
simulation. The former is used to implement the core
system including detailed protocols, algorithm imple-
mentation, and packet processing and byte manipula-
tion. NS2 is open source simulator, but its structure is
complex; adding a new component into the library or
patching the extensions is difficult. In (Xian et al.,
2008), the authors reported that NS2 requires a large
amount of memory and time for debugging and tra-
cing. Finally, NS2 source code implementation cannot
be reused on a real system (Kamoltham et al., 2012).
Therefore, the simulation code needs to be adapted to
work on a real-world network. In other words,
researchers need to implement their design twice:
one in NS2 and the other one for the real system.

Network Simulator Version 3 (NS3) is an open-
source simulator that provides an extensible network

simulation platform. NS3 mostly concentrate on the
Internet protocols, but it is not limited to that. Rather,
many users employ NS3 for M&S of non-Internet-
based systems (NS-3 Project, 2014). In contrast to
NS2, by using NS3, researchers do not need to readapt
their code for using it in a real system. In other words,
the same code can be used for both simulation and
emulation (Kamoltham et al., 2012). NS3 uses C++ for
both the core system and controlling simulation, and it
is not backward compatible with NS2 (Rajankumar et
al., 2014).

These simulators have been used for many research
projects related to our research. For instance, in
(Meenakshi et al., 2014), the authors used OPNET to
compare the performance of two routing protocols:
RIP (Routing Information Protocol) and EIGRP
(Extended Interior Gateway Routing Protocol) in
Universal Mobile Telecommunication system
(UMTS), a 3 G mobile technology. In (Rahman et al.,
2014), the authors formulated a resource allocation
problem and proposed an optimal algorithm. They
run packet-level simulation by using OPNET to
show the performance of their proposed method in
the Long-Term Evolution (LTE) networks. In (Zhu et
al., 2013), NS2 was used as a simulation tool to eval-
uate the performance of an energy-efficient routing
protocol in WSN and compared it with other existing
methods in this area. The authors used NS2 to mea-
sure the energy consumption of three protocols and
the number of live nodes during the network lifetime.
The authors in Qiu et al., 2009 described how one
could build an LTE/SAE model in NS2. They mea-
sured throughput, average delay, and average jitter. In
(Ghanem et al., 2012), the authors studied the ping-
pong handover, one major problem in LTE mobile
networks, and introduced a novel algorithm for
decreasing its probability. They used NS2 to show
the efficiency of their method. In (Guidolin et al.,
2012), the authors used NS3 to provide a comprehen-
sive evaluation of Multiple Input Multiple Output
(MIMO) in cellular networks. To do so, they simu-
lated a 2 × 2 MIMO system in LTE networks using
NS3. In (Guidolin et al., 2014), the authors proposed a
dynamic-distributed clustering algorithm for the LTE
downlink. They employed NS3 to compare the perfor-
mance of the proposed method with other clustering
solutions in an LTE scenario.

The work presented here has been used for building
a library for similar applications, which is based on the
DEVS formalism (A. G. Wainer, 2009). DEVS theory
is a formal modelling approach with a solid mathema-
tical background, which supports a formal modelling
both discrete and continuous systems. DEVS provides
a formal framework for M&S of the system of the
interest. Therefore, one can use DEVS as a precise
methodology to define the models. DEVS provides a
framework to build hierarchical models in a modular
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fashion. Based on DEVS, the system of interest can be
represented as a composition of atomic and coupled
components. Atomic models are the basic blocks,
which represent the behaviour of the system.
Coupled models are used to define the structure of
the system, such as interconnections among the mod-
els. These models can be reused, which can lead to
reductions in development and testing time. In addi-
tion, different DEVS models can be integrated easily to
produce more complex models (A. G. Wainer, 2009),
and, in particular, they can be easily combined with
other external models that could be useful for network
simulations (for instance, weather models, pedestrian
behaviour, or traffic in smart cities).

We used an extension to DEVS, called Cell-DEVS
to model mobile networks. Cell-DEVS allows defining
cellular models as discrete-event spatial components
that are built as DEVS models. Cell-DEVS combines
DEVS and Cellular models with explicit timing delay.
It is used to capture the behaviour of the system of
interest that can be represented as cell spaces. In Cell-
DEVS, each cell is represented as an atomic model. In
addition, a procedure is defined to connect cells to
their neighbouring cells. Each cell uses a time delay
mechanism that implements the required delay for
each state change event (A. G. Wainer, 2009; Kazi &
Wainer, 2017).

The formal definitions of DEVS and its advantages,
which have been discussed in the literature, can be
found in the Appendix (they have been included for
completion; this research is well known and we sug-
gest that appendix should be deleted in the final ver-
sion of the paper, unless required by the Editor).

In this paper, we used CD++ (A. G. Wainer, 2009;
Tavanpour et al., 2015), a framework for program-
ming DEVS models. In CD++, a Model file is used
for defining the DEVS coupled model hierarchical
structure and coupling, and atomic models are defined
in C++. An explanation of CD±± can be found in the
Appendix (this also has been included for completion;
this appendix could be cut in the definitive version of
the paper if required by the Editor).

3. Cell-DEVS modelling of mobile networks

As mentioned, mobile networks provide radio support
for their subscribers within the covered areas. Each
area may be divided into a number of Cell Towers, and
each Cell Tower has one fixed transceiver (from now
on, we will use the term evolved Node B – eNB – to
refer to this transceiver). Portable transceivers such as
smartphones and tablets will be called User
Equipment (UE). When a UE moves within the cov-
ered area, it connects to the network via the eNB of the
host Cell Tower. This eNB is called the serving eNB of
the UE, and the UEs use their serving eNB to have
access to the mobile network services.

We mentioned that the LTE-A standard uses the
CoMP method to enhance the Cell-edge users’ perfor-
mance. CoMP refers to a set of eNBs that coordinated
their work to reduce the interference level at the Cell-
edge users’ side. This increases the quality of the
received signal, and it leads to higher data rates for
the Cell-edge users. Section 4 discusses CoMP concept
and its advantages in more detail.

In this section, we show how to use Cell-DEVS to
model a mobile network, which allows studying the
spatial modelling of the phenomena, and the analysis
of different options using simulation. In the following
subsections, we first focus on model specification,
where we describe how we use Cell-DEVS’s features,
including how to define rules applied to each cell. The
model is used to track the UEs upload process, while
they are using either a non-cooperative algorithm or
CoMP to upload one data file. In CoMP networks,
each UE interacts with all the eNBs in its coordination
set. Our model will follow the standard specifications.
We will also use a non-cooperative algorithm, in
which each UE only communicates with its serving
eNB, to compare both methods.

3.1. Cell-DEVS model specification

In Figure 1(b), the first two planes keep track of the
position of the UEs within the network area for the
non-cooperative (ExistenceNo) and CoMP methods
(ExistenceCo). A value of zero (white cells in the dia-
gram) indicates a vacant cell, and a value of one (black
cells) stands for that there is a UE in the cell. The
number of UEs and their locations are selected ran-
domly at the start of the simulation.

In Figure 1(b), the third plane (Movement) holds the
direction of the next move for the UEs. At each step, a
new random value is assigned to each of the cells in the
third plane. This value is represented as an integer,
where 2, 3, 4, 5, or 6 correspond to moving to the E, S,
W, N, or not moving, respectively. Moreover, we use a
different colour for each of these values to make UEs
movements more visible in the figures. To do so, white,
light grey, medium grey, dark grey, or black colours are
corresponding to 2, 3, 4, 5, or 6 in order. If more than
one UE want to go to move to the same target cell, the
ones with higher priority complete their move, and the
rest of the UEs with the same destination stay in their
current location. The priority is chosen according to the
direction of the UEs movement.

Figure 1: (A) a mobile network model with two Cell
Towers, (B) Cell-DEVS model’s planes

Figure 2 presents a fragment of the model defini-
tion that describes this model in CD++. The top
model, named uploadFile, defines the dimensions of
the cell grid, the type of delay functions used, the
border definition (a wrapped model), as well as the
neighbourhood scheme and the model’s planes
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discussed earlier. The model is “wrapped”, which
means that the model is converted into a hypercube.

Figure 3 represents the initial state of the cells
according to the input file that we have defined in
Figure 2. Here, the different colours of the cells at
each plane represent different values. For example, in
the last four planes, a cell in black has a positive value.

The UEs in the cells of the first two planes check their
corresponding cell in the third plane to decide the direc-
tion of their nextmove (fromnow on, we call correspond-
ing cells to two cells in different planes with same row and
column; for instance, x; y; z1ð Þ and x; y; z2ð Þ). For exam-
ple, in Figure 4, the UE in (0,11,0) checks the cell (0,11,2)
to decide the direction of its next move. Although it is
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Figure 1. (A) shows a 2D representation of a mobile network area with two Cell Towers (Notation: from now on, “Cell Tower” refers
to a geographic area and “cell” refers to a single cell in a cellular model using Cell-DEVS). Each Cell Tower has one serving eNB, which
is located in its centre. The Cell Tower radius is 500 m; however, the eNBs signal can be received within a 750 m radius from the
Cell Tower centre. Each Cell-DEVS cell represents an area of 50 m2. Any cell in the model can be either vacant or occupied by a UE.
The UEs are free to move randomly within an area of 1 × 2 km2. In this model, we show a mechanism for defining a complex model
and its spatial properties: we use a 3D Cell-DEVS model, in which we represent a different aspect of the model on different 2D
plane interconnected. The Cell-DEVS representation allows defining different aspects in the spatial model in different planes,
which are interconnected through the Cell-DEVS coupled model specification, and the neighbourhood relationship. This example
will show how to address this kind of phenomena using the Cell-DEVS methodology.

[uploadFile]
type : cell dim : (40,20,7) delay : transport
defaultDelayTime : 100 border : wrapped ...
initialCellsValue : Coverage_v1.val        %input file
localtransition : ExistenceNo %{ (0,0,0)..(39,19,0) }
zone : ExistenceCo { (0,0,1)..(39,19,1) }
zone : Movement { (0,0,2)..(39,19,2) }
zone : DataRateNo { (0,0,3)..(39,19,3) }
zone : DataRateCo { (0,0,4)..(39,19,4) }
zone : FileSizeNo  { (0,0,5)..(39,19,5) }
zone : FileSizeCo  { (0,0,6)..(39,19,6) }
neighbors:...
...

Figure 2. Coupled model definition in CD++.
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not depicted in this figure, the UE in (0,11,1) checks the
same cell in the movement plane for its next move. In
this example, the UEs in (0,11,0) and (0,11,1) would stay
in the same cells during the next interval according to the
corresponding cell value in the movement plane.
Different mobility models can be easily implemented
and modified (Farooq et al., 2007; A. G. Wainer, 2007,
2006).

In Figure 1(b), the cells in the fourth plane
(DataRateNo) represent the upload data rate of the
UEs in their corresponding cell in the first plane
(ExistenceNo). The value of these cells is fixed during
the simulation time. The available data rate for the
UEs at each cell is calculated as Equation 1 (The 3rd
Generation Partnership Project [3GPP], The 3rd
Generation Partnership Project, 2017):

data rate ¼ B log2 1þ Rpwr

N0 � B

� �
(1)

Where B and N0 are the transmission bandwidth and
the noise variance; Rpwr is the signal power received,
measured as in Equation 2 (where Tpwr is the trans-
mitted signal power, TGain is the transmitter antenna
gain, RGain is the receiver antenna gain and MCL is the

minimum coupling loss) (The 3rd Generation
Partnership Project, 2017).

Rpwr ¼ Tpwr

�Max pathloss� TGain � RGain;MCLð Þ (2)

To calculate Rpwr we need to know the value of the path
loss. Equation 3 shows that this parameter is measured
based on the log-normally distributed shadowing with a
standard deviation of 10 dB (LogFÞ and macrocell pro-
pagation model for the urban area (Lurban) (The 3rd
Generation Partnership Project, 2017).

pathloss ¼ Lurban þ LogF (3)

The macroCell propagation model for an urban area,
which is denoted as Lurban, is calculated using Equation
4 (The 3rd Generation Partnership Project, 2017):

Lurban ¼ ð40� 1� 4�10�3�Dhb� �� ��log10RÞ
� 18�log10Dhb
� �þ 21�log10f

� �þ 80dB

(4)

Where R is the eNB-UE separation in kilometres, f is
the carrier frequency in MHz and Dhb is the base
station antenna height in m. In this article, we use an
urban area setting for mobile networks. Table 1

ExistenceNo ExistenceCo Movement DataRateNo DataRateCo FileSizeNo FileSizeCo

20 cells

40
ce
lls

No : Normal (non-cooperative)
Co : CoMP

Figure 3. Initial status of the cell of the seven planes using a specific input file.

(0,0,0)
(0,11,0)

(10,0,0)

(0,11,2)(0,0,2)

ExistenceNo (Plane 1) Movement (Plane 3)

(3,0,0)

Figure 4. Planes 1 and 3 during the simulation.
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displays the required parameters and their value (The
3rd Generation Partnership Project, 2017).

In Figure 1(b), the cells in the fifth plane
(DataRateCo) are initialised similarly to the previous
plane cells. These cells represent the upload data rate
of the UEs in their corresponding cell in the
ExistenceCo plane. Those UEs were supposed to use
CoMP. Therefore, during the upload process the cell-
edge UEs (in the second plane) experience reduced
interference and higher data rate compared to the UEs
in the first plane (Tavanpour et al., 2015, 2014). The
CoMP gain for the cell-edge users is up to 10–20%.

In Figure 1(b), the size of data files of the UEs is
saved in the last two planes. At the beginning of the
simulation, the corresponding cells in these two planes
have the same exact values. During the simulation, at
each step, we reduce this number according to the data
rate at the cell that the UE has occupied. In addition,
the updated data file size is moved to the correspond-
ing cell of the new location of the UE. For example, if
the UE in the first or second plane moves to the N cell,

the updated value of the corresponding cell in the sixth
or seventh plane is shifted to the N cell as well.

3.2. Cell-DEVS model plane’s rules

We need to define the required rules for the cells of
each plane. For the cells of the first two planes, we have
three main situations: when a UE leaves a cell or it
finishes its upload, when a UE stays in the same cell
and when a UE enters a cell. We only discuss the
required rules for the first plane. The rules for the
second plane are similar (with minor modifications).

The rules above show the first case. The first
line checks if there is a UE in the cell, and it has
uploaded its data file. To check the upload status
of the data file, a UE in the first plane should
check its corresponding cell in the sixth plane in
order. If the value in that corresponding cell is
equal or less than zero, it means that the UE has
uploaded the data file completely. Therefore, we
change the value of the host cell to zero. The next
rules are used for the cells in the first plane that
have a UE, and that UE has not finished the data
file upload yet. The first rule in this set tells us
that the UE wants to go the cell to the east in the
next step and that the destination cell is empty.
Therefore, the UE can move to that cell, and the
value of the current host cell is set to zero. In the
next rule, we check if a UE wants to move to the
south. We also need to check the priority of the
movement. To do so, besides the S direction and
the empty destination cell, the host cell also needs
to check that nobody from the west side of the
destination cell wants to go to the destination cell
(south vs. east). We need to define more rules to
cover possible UEs movement to other directions
as well.

With the previous set of rules, we covered the
UEs movement to a new destination. If none of
those rules applies to a cell, it may mean that the
UE must stay in the same cell for the next iteration
(second case). Therefore, regardless of the value of
the Movement plane, we need to check if the UE
remains active for the next iteration, and if that is
the case, we need to set the value of the cell for the
next iteration. Otherwise, we assign 0 to the cell.
The following rules show the second case.

The next rules are used for cells without an
active UE. These cells check the neighbour cells
to see if there is any active UE that wants to move
to them. If they find such a UE, then they also
need to check the upload status of this UE to
make sure that it is not going to be finished at
the end of the current cycle. This process must be
done according to the moving priority of the UEs.
Therefore, these cells check the west neighbour
first, then the north neighbour (if it is required),
etc. The following rules show this situation.

Table 1. Urban area setting.
Parameter Value

Frequency 2000 MHz
eNB Antenna Gain 15 dB
Transmission bandwidth 5 MHz
Noise Density −174 dBm/Hz
MCL 70 dB
eNB Antenna Height above rooftop (Dhb) 15 m
Standard deviation 10 dB
File size [10MB, 640MB]
Maximum eNB power 43
Maximum power per DL traffic channel 30 dBm
Minimum eNB power per user 15 dBm
eNB Noise figure 5 dB
Maximum UE power 21 dBm
Minimum UE power −50 dBm
UE Noise figure 9 dB

rule: 1 100 {(0,0,0) = 1 and (0,0,5) ! = 0 and ((0,0,5) – (0,0,3)) > 0}
rule: 0 100 {(0,0,0) = 1 and (0,0,5) ! = 0 and ((0,0,5) – (0,0,3)) ≤ 0}

[ExistenceNo]
rule: 0 100 {(0,0,0) = 1 and (0,0,5) ≤ 0}
rule: 0 100 {(0,0,0) = 1 and (0,0,5) > 0 and (0,0,2) = 2 and (0,1,0) = 0}
rule: 0 100 {(0,0,0) = 1 and (0,0,5) > 0 and (0,0,2) = 3 and (1,0,0) = 0 and

((1,-1,0) = 0 or (1,-1,2) ! = 2)} ...
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As mentioned earlier, the third plane is used to repre-
sent the direction of the UEs’ movement in the first two
planes. The cells’ value can be a randomnumber between
2 and 6. At each step, we assign a new random value to
each cell of the third plane. However, we can assign the
new values only to the cells that the value of their corre-
sponding cell in one of the first two planes is one and
assign zero to the rest of the cells. The fourth and fifth
planes (DataRateNo, DataRateCo) contain fixed para-
meters that are not changing during the simulation.

The sixth and seventh planes keep track of the data file
size of the UEs that use non-cooperative algorithm and
CoMP These two planes are coordinated with their cor-
responding cells in the first two planes. If a UE in one of
the cells of the first plane wants to move to another cell
(destination cell), the data file size in the sixth plane
should be updated according to this movement. This
means that the corresponding cell of the destination
cell in the sixth plane should have the updated data file
size, and the corresponding cell of the current host cell in
the sixth plane should be set to zero. Figure 5 shows an
example of this situation. In this figure, in the iterationN,
there is one active UE in the Existence plane. This UE
wants to go the north in the next cycle (according to the
Movement plane). Therefore, in the DataFileSize plane,
the updated data file size (150–15) should move to the
corresponding cell as well.

The following rules are applied for the cells of the
sixth plane. The first set is applied to the cells that the
UE in their corresponding cell in the first plane moves
to a neighbour cell. The second set is applied to the
cells that their corresponding cell in the first plane is
going to be the host of a UE. As always, the order of
the rules is important, and we define the rules accord-
ing to the UEs movement priority.

3.3. Cell-DEVS model behaviour and results

We will now show to compare the upload time of the
UEs while they are using a non-cooperative algorithm
and CoMP. The model can be used to study the per-
formance of a network, the location for the eNBs to
provide reduced cost and better coverage. We will
discuss two of the simulation scenarios we studied.
In both, the geographical area is covered by two Cell
Towers (as in Figure 1). We have one eNB per each

Cell Tower, located at the Cell Tower centre. We used
a 40 × 20 model to represent both Cell Towers (a
20 × 20 sub model to represent each Cell Tower).
Each cell represents 50 m2 area. The remaining para-
meters used are presented in Table 1.

The number of the UEs, initial location, movement
during the simulation time and the size of the data file
that they want to upload are similar for the both non-
cooperative and CoMP We assumed that at the begin-
ning of the simulation, 20% of the cells have an active
UE (a UE that wants to upload a data file). These cells
are shown with black colour. The UEs are randomly
distributed among the cells (by using a uniform dis-
tribution), and each cell has at most one active UE at a
time. Figure 6 shows the initial setup of this simulation
scenario for the first two planes. During the simula-
tion, the UEs travel among the cells, and at each step,
we reduce from their data file size according to the
available data rate at their host cell. As mentioned in
Figure 1, the cell-edge area is located between rows 15
and 25. The UEs that travel between rows 15 and 25
can use either the non-cooperative algorithm or
CoMP to upload their data files. The UEs can only
use the non-cooperative algorithm as their upload
method when they travel in the non-cell edge areas
(between rows 0 and 14, and between rows 26 and 39).

The simulation results show that for both the meth-
ods, the UEs in the non-cell-edge areas have the same
results. However, in the cell-edge areas, the UEs that
use the CoMP method show better performance. For
example, in Figure 7, which shows the first two planes
status in the 25th iteration, if we focus on the common
cell-edge area between the two Cell Towers (row 15 to
25), the first plane has more number of the UEs that
has not finished their upload yet. In the left side of this

figure (plane one), the UEs were able to use only the
non-cooperative algorithm as their upload method in
the covered area. On contrary, in the right side of the
figure (plane two), the UEs were also able to use CoMP
if they were in the cell-edge areas. As seen in Figure 7,
in the 25th iteration of the simulation, the upload
process of a less number of UEs is unfinished when
they were able to use CoMP as their upload technique
compared to the situation in which the UEs were only
able to use the non-cooperative algorithm. This

rule: 1 100 {(0,0,0) = 0 and (0,-1,0) = 1 and (0,-1,2) = 2 and ((0,-1,5)-(0,-1,3))>0}
rule: 1 100 {(0,0,0) = 0 and (−1,0,0) = 1 and (−1,0,2) = 3 and ((−1,0,5)-(−1,0,3))>0}

rule: 0 100 {(0,0,0) > 0 and (0,0,-5) = 1 and (0,0,-3) = 2 and (0,1,-5) = 0}
rule: 0 100 {(0,0,0) > 0 and (0,0,-5) = 1 and (0,0,-3) = 3 and (1,0,-5) = 0

and ((1,-1,-5) = 0 or (1,-1,-3) ! = 2)}
...
rule: {(0,-1,0) – (0,-1,-2)} 100 {(0,0,0) = 0 and (0,0,-5) = 0 and ((0,-1,-5) = 1

and (0,-1,-3) = 2) and ((0,-1,0) – (0,-1,-2)) > 0}% input from west
rule: {(−1,0,0) – (−1,0,-2)} 100 {(0,0,0) = 0 and (0,0,-5) = 0 and ((−1,0,-5) = 1

and (−1,0,-3) = 3) and ((−1,0,0) – (−1,0,-2)) > 0}% input from north
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Figure 6. First two planes initial status; simulation scenario one.
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Figure 7. First two planes status in the 25th iteration of the simulation scenario 1.
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Figure 5. Update the data file size.
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explains why we see a smaller number of black cells in
the cell-edge area of plane two.

The following results present another scenario in
which we focus on the behaviour of the UEs when
they are initially distributed on the cell-edge area
between the two Cell Towers. In this scenario, we ran-
domly distributed 45 active UEs among the cells
between row 15 and row 25. Again, each cell has at
most one active UE at a time.

Figure 8 shows the initial status of the first two
planes. As in the previous scenario, at each step, a
new random number is generated for the UEs move-
ment. Therefore, the UEs may travel in any direction.
Figure 9 shows the first two planes in the19th iteration.
As there are less UEs that remained in the right side of
Figure 9, we can see that the UEs in plane 2 that used

CoMP had better performance, and more of them
finish their upload faster than the UEs in plane 1.
This scenario shows the effect of CoMP on the upload
performance of the UEs in the cell-edge area.

One important point about the Cell-DEVS model is
that we can easily scale it up to cover a bigger area or a
greater number of UEs.We also can add more planes to
design a more complicated model. For example, to scale
it up to cover a bigger area, we only need to increase the
number of the rows and columns in the variable “dim”
in Figure 2 as well as adjusting the “zone” variables.
Since, same rules are applied to the cells; we do not need
to add more rules. However, if we want to add more
planes to have a more complicated model, we need to
define the rules for the new plane accordingly to
demonstrate its role in our model.

0
1
2

9

15

20

25

30

35

39

14

0
1
2

9

15

20

25

30

35

39

14

0 1 2 11 1915 0 1 2 11 1915

Figure 8. First two planes initial status in the simulation scenario 2.
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Figure 9. First two planes status in the 19th iteration of the simulation scenario 2.
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In this section, we focused on the Cell-DEVS model
for the mobile network, where we studied the effect of
CoMP technique on the users’ upload performance. In
the next section, we focus on a DEVS model for the
two CoMP approaches, while our focus is on how
timing challenges can be addressed by a DEVS model.

4. DEVS modelling of mobile networks

As discussed earlier, UEs located near the Cell Tower’s
borders suffer from two transmission barriers: the
distance between the UE and its serving eNB, and
the higher Inter-Cell Interference (ICI) that the UE
receives from the neighbouring Cell Towers. Long-
Term Evolution-Advanced (LTE-A) was introduced
as a mobile communication standard in the 4 G sys-
tems and beyond to solve these problems.

As discussed in the previous sections, LTE-A can use
CoMP (Tavanpour et al., 2015, 2014) to enhance the
performance of the users regardless of their location
within the coverage area. In CoMP, a coordination set
refers to a set of eNBs that are coordinated jointly and
dynamically. The objective of such coordination set is to
manage and mitigate interference, enhancing the perfor-
mance of UEs, especially for those close to the Cell Tower
edge. CoMP can be used in both the uplink and downlink
processes. To support this feature in LTE-Anetworks, the
eNBs and UEs require the exchange of scheduling deci-
sions, hybrid ARQ feedback, channel state information
(CSI), and other control information. The eNBs share the
received messages from their UEs with other eNBs in the
coordination set using a standard interface denoted asX2.

As seen in Figure 10, CoMP methods can use two
different techniques: Joint Processing (JP) and
Coordinated Scheduling or Beamforming (CS/CB). In
JP two or more coordinating eNBs simultaneously trans-
mit or receive data from the UEs, and this simultaneous
data transmission increases the power of the received
signal, increasing data rates. In CS/CB, the eNBs coordi-
nate and schedule resources to UEs dynamically, in such

a way that minimises the effects of ICI (Tavanpour et al.,
2015, 2014). In this method, only one of the eNBs trans-
mits a signal to the UE and the other eNBs of the
coordination set try to reduce the interference level.

Such coordination between eNBs is complicated,
especially when the network provides coverage for a
large area with a large number of users, and therefore,
verifying and validating original approaches on live
networks is complicated. In the rest of this section, we
first focus on the DEVS model hierarchy and model
definition. Then, we elaborate the behavioural of the
components of the model. Finally, the complete model
behaviour and results are presented.

4.1. DEVS model hierarchy definition

The right side of Figure 11 shows a simplified DEVS
model hierarchy for a mobile network. The topmodel is
called Area, which includes several Cell Tower coupled
models as its sub models. Each Cell Tower has one eNB
coupled model, and a few UE coupled models. Both the
UE and eNB coupled models have two atomic models
as their sub models (processor and queue).

In the mobile network, the eNBs are connected
through X2 interfaces. In our DEVS model, we need
to connect each pair of eNBs together. To do so, we
connect one of the output ports of the eNBProcessor
of the first eNB to one of the input ports of the
eNBQueue of the second eNB and vice versa. In addi-
tion, a UE may travel among the Cell Towers of a
mobile network, and it communicates with the eNB
of those Cell Towers. Therefore, there should be sepa-
rate connections between each pair of the UEs and the
eNBs-coupled models. To support such a communica-
tion, we need two connections between each pair of
UEs and eNBs coupled models. One of them will be
used to connect one of the output ports of a
UEProcessor to an input port of an eNBQueue, and
the other will be used to connect one of the output
ports of the eNBProcessor to an input port of the

X2 Interface

X2
X2

JP transmission

a )

X2 Interface

X2

X2

CS/CB signal

CS/CB
interference

b)

eNB

Figure 10. (A) JP transmission (B) Coordinated scheduling/beamforming in LTE-A.
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UEQueue. Moreover, if we focus on a UE and an eNB-
coupled model in Figure 11, there is a connection
(“Request”) between their atomic models (between
the processor and the queue atomic models). The
processor atomic model uses this link to send out a
message to the queue atomic model to say it is ready
for the next task. In addition, another connection
connects the only output port of the queue atomic
model to the only input port of the processor atomic
model.

The left side of Figure 11 shows the Model file that
defines the structure of the DEVSmodel on the right side
of this figure by using CD++. The definition of the
hierarchy of the model is started by defining the Area
as the top model. To do so, the components of the Area
coupled model as well as the interconnections among
these components are defined. As the next step, the
internal structure of the components of the Area coupled
model is defined one by one. This process is continued
until we reach to a complete definition of our DEVS
model structure.

4.2. DEVS model components’ behaviour

The queue atomic model has three states: namely, Idle,
Push, and Pop. The external transition function

receives messages from the input ports and initiates
appropriate state transitions. Furthermore, the inter-
nal transition function defines state changes according
to the current state, and the time advance function
controls the required timing configuration during the
simulation.

Two atomic models present the behavioural of the
processor of eNBs and UEs: eNBProcessor and
UEProcessor in order. In this model, the UEs commu-
nicate with each other through eNBs. Therefore, UEs
can send/receive data or control information to/from
their serving eNB. The control packets include the
base information for eNBs. The eNBs use this infor-
mation to determine the UE’s status. For example,
according to this information, a serving eNB can
determine if a certain UE will be scheduled to operate
in normal mode or CoMP mode and if it gets sched-
uled to be in CoMP mode, which eNBs are in the
coordination set. In such a case, the serving eNB
must send data and control information to the other
eNBs in the CoMP session. In addition, according to
these control packets, an eNB can determine that a UE
wants to move from one Cell Tower to another Cell
Tower or even that a UE wants to leave the Area. In
such a scenario, eNBs should handover both data and
control packets to other eNBs. In case of data packets,

components: Cell1  Cell2  ...
Link : Out1@Cell1   In1@Cell2
Link : Out1@Cell2   In1@Cell1
Link : Out2@Cell1 In2@Cell2
...
[Cell1]
components: eNB1  UE1 …
in : In1    in : In2  …
Out : Out1  Out : Out2 …
Link : In1@Cell1  In1@eNB1
Link : In2@Cell1  In1@UE1
...
Link : Out1@eNB1  Out1@Cell1
Link : Out1@UE1    Out2@Cell1
…
[eNB1]
Components: 
eNBP1C1@eNBProcessor eNBQ1C1@eNBQueue
in : In1      
in : In2
Out: Out1     
Out: Out2 …
Link : Request@eNBP1C1  Re-
quest@eNBQ1C1
Link : In1@eNB1   In1@eNBQ1C1
Link : In2@eNB1   In2@eNBQ1C1
…
Link : Out1@eNBP1C1   Out1@eNB
Link : Out2@eNBP1C1   Out2@eNB
…
[eNBP1C1]
// parameters for the atomic model …
[Cell2] 
…

UEQueue UEProcessor

UE1

eNBQueue eNBProcessor

eNB1

Cell1

eNBQueue eNBProcessor

eNB2
Cell2

Request

Area

Figure 11. Simplified DEVS model hierarchy and model definition for a mobile network.
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the source UE sends its data packet to its serving eNB,
and this eNB uses the destination address to forward
the packet. This packet may be handover among mul-
tiple eNBs to reach to the serving eNB of the destina-
tion UE, and then the packet can be delivered to its
destination. We use atomic models to implement the
operation of the eNBs and UEs processor. To do so,
the external transition function receives messages
from the input ports and initiates appropriate state
transitions. Moreover, the internal transition function
defines state changes according to the current state. In
addition, the output function sends out the data/con-
trol packets over the output ports. Again, it worth to
mention that the eNBs communicate over X2 inter-
faces, and a pair of eNB and UE communicate over
radio signals. The X2 interface characteristic can have
a huge effect on the overall network performance.

Now, the UEPRocessor and UEQueue atomic mod-
els can be discussed in more detail. The eNBProcessor
and eNBQueue are similar. A UEQueue keeps the
arrival messages to the UE coupled model. Upon
receiving a request message (via “Request” port), it
forwards one message (the one that has arrived sooner
than the others have) to the UEProcessor. The
UEProcessor is responsible to process the received
messages and to perform the required actions based
on the arrival messages. A simplified behaviour of a
UE is implemented in an atomic model by using
different states that each of these states represents a
specific status of a UE. As seen in Figure 12,
UEProcessor is defined using six states. The initial
state is AskNewTask. There is only one transition
from this state. When UEProcessor sends a request
message (which, in the coupled model defined above,
will be sent to the corresponding UEQueue asking for
a new task), it changes its state to “Idle”. In the “Idle”
state, one of the following three transitions can occur.
If the UE wants to generate an output packet (an
acknowledgement – ACK – or a data packet), it
switches to “SendPack”. If a UE receives an external

message carrying a data packet, there is a transition
from “Idle” to “RecPack”. Finally, if a UE receives an
external message representing an acknowledgement
packet (for a data packet sent earlier), UEProcessor
changes from “Idle” to “RecAck”. In the “RecAck”
state, once the UEProcessor finishes the acknowledge-
ment of the packet, it changes its state to the
“AskNewTask” state. In the “RecPack” state, if the
UEProcessor wants to continue operating in the cur-
rent mode a state transition to the “AskNewTask” state
occurs. Otherwise, it switches to “UEMode” state and
it changes the UE receiving mode (that has been
described in the previous paragraph) and from there
it changes the state to the “AskNewTask” state. In the
“SendPack” state, UEProcessor forms the output (data
or ACK) packet. After that, the UE sends out the
output packet and it goes back to the “Idle” state.

4.3. DEVS model behaviour and results

To implement our DEVS model, we start by defining
the atomic models and testing their functionality. For
example, in the case of eNBs, we build the eNB
coupled model after testing the eNBProcessor and
eNBQueue atomic models. To do so, we defined a
Model file to define the eNB coupled model, input/
output ports, its components, and the interconnection
among these components. After that, we can evaluate
the functionality of an eNB coupled model. We do the
same for the rest of the coupled models until we build
all the required models.

As mentioned earlier, a UE in a normal mode only
communicates with other entities through its serving
eNB. In such a scenario, the serving eNB of the source
UE forwards the received packets to the serving eNB
of the destination eNB through the LTE-A network.
Finally, the destination UE receives the message from
its serving eNB. Figure 13 illustrates a sample of such
communication between UE0 and UE2. For this
example, eNB0 and eNB4 are the serving eNBs of

Figure 12. UE processor DEVS graph.
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UE0 and UE2 in order. UE0 produced data packets
and UE2 has created an ACK packet for each of
received data packets from eNB4.

The serving eNBof a cell-edgeUE can determine if the
UE is a candidate for working inCoMPmode. According
to this scenario, the serving eNB can create a coordina-
tion set for that UE to improve its performance. To do so,
the serving eNB should communicate with other eNBs. If
the UE chose the JP method, the serving eNB should
share UE’s data among the eNBs of the coordination set,
and after that, all the eNBs of the coordination set for-
wards the data to theUE simultaneously. Figure 14 shows
such scheduling among the eNBs of the coordination set.
As seen in this figure, the serving eNB sends out a copy of
the data to non-serving eNBs of the coordination set.
After that, all three eNBs sends the same copy of the
data to the UE at the same time.

However, if the UE selects the CS/CB method, then
the serving eNB sends the interference cancellation
message to the other eNBs of the coordination set.
The CoMP scheduling continues while a UE remains
in a shared area, which is covered by the eNBs of the
CoMP coordination set, so that the UE can benefit
from high data rate and reduced interference. As seen
in Figure 15, the UE communicates with its serving
eNB, and it exchanges some information about the
network status. The serving eNB realises that the UE
can be a candidate to use the CoMP technique as the
upload method. Therefore, it sends a control message
to the non-serving eNBs of the UE coordination set to
ask them to support the UE upload by reducing the
interference with that specific UE. We assumed that
the eNB processors and the X2 interfaces that connect
the eNBs are fast. This means that the delay in eNB-to-
eNB communication is negligible.

Again, like the Cell-DEVS model, scaling up the
simulation is not a complicated task for our DEVS

model. Once we define our components, we can get
any number of instances that we require from our
simulation. We only need to take care of the connec-
tions among the components.

In this section, we showed how DEVS can be used
to define a model hierarchy. In addition, we discussed
how it can easily be used to implement the timing
property of a DEVS model’s components. In the next
section, we study Cell-DEVS application for the
implementation of a WSN model.

5. Cell-DEVS model for wireless sensor
networks

Wireless Sensor Networks are collections of nodes that
can sense a variety of physical phenomena, partially
process the raw data locally and communicate wire-
lessly. Each node is equipped with processing units
like microcontrollers, CPUs, different types of memory,
an RF transceiver, a power source (e.g., batteries or solar
cells), and diverse sensors and actuators (Stankovic,
2008). One of the core features of WSN is their ability
to collect information from the real world and commu-
nicating that information to more powerful logical
devices that can process it and use accordingly (He et
al., 2004). In recent years, WSNs have received tremen-
dous attention in the research community, with appli-
cations in health care, transportation, battlefields,
energy management, industrial process monitoring,
home automation, environmental monitoring, etc
(Farooq & Kunz, 2011; Wainer et al., 2013).

As the applications of WSN increasing gradually,
sensor nodes become more vulnerable to many security
attacks like malware. Although security has been widely
studied and many techniques have been developed for
classical wired networks, many of them are not well
suited in WSNs. The WSNs are highly distributed,

Time        Port  Value    
...

//UE0 Processor out
00:00:00:020 0  020001... //UE0 send out a message to its serving eNB (s-eNB)
00:00:00:052  0  020002...
...

//eNB0 Processor out
00:00:00:022 4  020001... //eNB0 forwards the received message to another eNB
00:00:00:030  7  201001...
00:00:00:054  4  020002...
00:00:00:064  7  201002...
...

//eNB4 Processor out
00:00:00:024  9  020001... //s-eNB of destination UE forwards received message
00:00:00:028  0  201001...
00:00:00:056  9  020002...
00:00:00:060  0  201002...
...

//UE2 Processor Out
00:00:00:026 4 201001... //destination UE sends back ACK for received message
00:00:00:058  4  201002...

Figure 13. UE communication in normal mode.
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self-organised, resource constrained, broadcast nature
of its transmission medium and unattended environ-
ment, which makes it more valuable inmalware attacks.
A malware residing in an active node can infect its
active neighbours, which can directly communicate
with this node. Several actions or states within a node,
for example, computation activity in the
Microcontroller Unit (MCU), data transmission, data
reception, idling, and sleeping, consume the energy of a
node. Among these, the most energy-consuming activ-
ity is data transmission (El-Shabani et al., 2013).
Therefore, when malware is transmitted from one
node to another node repeatedly, the energy of the
nodes is exhausted, and more nodes become dead.

In (Nekovee, 2007), the authors developed a new
model for epidemic spreading of worms. They investi-
gated the spreading of worms in Wi-Fi-based wireless
ad-hoc networks by using Monte Carlo simulations.
The authors of (Wang et al., 2010) proposed a model
for analysing the dynamics of worm propagation in
wireless sensor networks based on epidemic theory. In
(Song & Jiang, 2008), the authors analysed the process
of malware propagation in WSN using cellular auto-
mata and validated the model. Our model is based on
this work. In this section, we show an implementation
of such amodel defined using Cell-DEVS and presented
the results that successfully satisfy the previous results.
In the results section, we presented how the simulation
results agree with the results in (song & Jiang, 2008).

This open library can be used by researchers in the field
of networks on how to transform similar models into
the Cell-DEVS versions. This model is composed of
maximum N stationary and identical sensors. The sen-
sors are randomly deployed on a rectangular two-
dimension grid composed of L × L cells. Each cell is
occupied by one or no sensor node. Sensor nodes can
establish wireless links with each other within a circle of
radius r. In this model, a sensor node is considered into
one of the following four states (Song & Jiang, 2008;
Wainer et al., 2013):

● Susceptible (S): The nodes in state S have not
been infected by worm yet but are vulnerable to
become infected.

● Infected (I): The nodes in I have been infected by
malware in the WSN and may spread the mal-
ware to its neighbours.

● Recovered (R): The nodes in R used to be infected
by malware and recovered from the infected
malware.

● Dead (D): Sensors have restrained power that
decreased during wireless communication, so a
node can run out of energy.

Initially, all the nodes in the lattice are considered
Susceptible, with fixed power. Though the energy con-
sumption of a node depends on several actions, message
transmission consumed the maximum energy of a

Time        Port Value    
//Serving eNB

00:00:00:178 6 201004... //To the non-serving eNB
00:00:00:178 1 201004... //To the non-serving eNB
00:00:00:180 7 201004... //To UE
…

//non-serving eNB of the coordination set
00:00:00:180 9 201004... //To UE
…

//non-serving eNB of the coordination set
00:00:00:180 9 201004 ... //To UE
…

Figure 14. eNB to UE message in JP method.

Time      Port Value   
//UE Output

00:00:00:430 0 113610... //To the Serving eNB
…

//Serving eNB Input
00:00:00:432 In 113610
…

//Serving eNB Output
00:00:00:438 1 114010... //To the non-serving eNB 
00:00:00:438 6 114060... //To the non-serving eNB
…

//The non-serving eNB of the coordination set Input
00:00:00:438 0 114010... // Message from the serving eNB 
…

//The non-serving eNB of the coordination set Input
00:00:00:438 0 114060... // Message from the serving eNB
…

Figure 15. Control messaging among the eNBs in CS/CB method.
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sensor node and the other factors fade in comparison.
Therefore, in the Susceptible state, a node consumes
energy at the low rate. A node consumes energy at the
highest rate in the Infected state because it broadcasts
the malware packets to other nodes (Wainer et al.,
2013). A node completely drained out of power is
moved to the Dead state. Cells in the grid without any
sensor node are considered in Dead state. Figure 16
shows the transition of states of a node based on the
different probabilities (Song & Jiang, 2008). In the tran-
sition diagram α, β and γ are the probabilities of the
transition of states. The transition probability from
susceptible state to infected state is β and from infected

sate to recovered state is α. Moreover, a node can move
to the dead state at a probability of γ. The details of the
probability parameters will be discussed later.

In this section, we present a model of malware pro-

pagation in WSN using Cell-DEVS. The entire covered
area of the network is considered as cell space and the
coverage area of a node is considered as a cell. We built
a Cell-DEVS model consisting of a 3D lattice (20*20*2
cells). We considered two planes: the first one describes
the different deployed sensor nodes and the transition
of the nodes. The second plane represents the energy
status of the corresponding nodes in the first plane
throughout the simulation. In this model, Moore’s
neighbourhood is adopted. Therefore, there are nine
neighbouring cells with the origin cell.

● The states of a node discussed earlier are denoted
in Cell-DEVS as below: Let St be a variable that
denotes the states of a node at a specific time and
St = {0, 1, 2, 3, 4} where, the node or the cell is in
Susceptible state within the coverage area of the
network or within the cell space.

● 1: The node is in Dead state within the coverage
area of the network or within the cell space.

● 2: The node is in Recovered state within the cover-
age area of the network or within the cell space.

● 3&4. The node is in Infected state within the cover-
age area of the network or within the cell space.

Each plane uses its own rules. Infected nodes in the
sensor network try to diffuse the malware at each time
step to their neighbours. All the nodes in the Susceptible
state become infected with probability β when it
received a packet containing a copy of the malware.

Otherwise, the node remains in the Susceptible state.
From the Infected state, a node can go to Recovered state
by running a patch with a probability α. Sensor nodes
transit to Dead state from any other state with a rate γ
based on the restrained power of the sensors and the
consumptions during communication or packet trans-
mission among the nodes. A cell of the grid that does
not contain any node also considered as dead node.

To observe the malware propagation, two types of
information (state transition and energy reduction)
play a role in our model. The following sample rules
are used to decide how a sensor node changes its state
from Susceptible to Infected state. Here the transition

probability ß is 30% (ß = 0.3).
A node consumes energy in any state, but the

highest consumption is considered in Infected
state. The rules below show how the energy of

an infected cell (node) reduces to 80% of the
original.

We will discuss a few examples on the execution of
this model showing how the malware propagates into
the network as well as how the propagation of malware
affects the energy consumption of a sensor node. In
our first scenario, we executed malware propagation
for a 20 × 20 network with radius r = 1.5. Initially, all
the sensor nodes are considered with full of power and
we assume that one sensor is infected with malware.
The transition probability from Susceptible state to
Infected state is 30% (β = 0.3). The state of a cell
changes from Infected to Recovered with 1% probabil-
ity (α = 0.01) if its energy level is greater than 1 (at the
beginning of the simulation the energy level of a node
is 100). Second plane represents the energy status of
the corresponding node in every time step. If the state
of the cell (sensor node) is Infected, then its energy is
reduced to 80% of the original in the next simulation
step. Likewise, the energy of the sensors in the
Susceptible and Recovery states decreases to 99% and
95% of the previous value, respectively.

The simulation results shown in Figure 17 describe
the malware propagation using transition probability
of 30% from Susceptible state to Infected state. Figure
17(a) shows one infected node by a dark grey cell as
initial state. In the next simulation step, the energy of
the infected sensor decreases to 80. Similarly, the
energy of the other sensors in the Susceptible state
decreases to 99. The malware spreads and infects

rule: 3 100 {(0,0,0) = 0 and stateCount(3) ≥ 1 and (random ≤ 0.3)}
rule: 4 100 {(0,0,0) = 0 and stateCount(4) ≥ 1 and (random ≤ 0.3)}

rule: {(0,0,0)*.8} 100 {(0,0,0)>1 and (0,0,-1) = 3}
rule: {(0,0,0)*.8} 100 {(0,0,0)>1 and (0,0,-1) = 4}
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more sensors as it can be seen in Figure 17(b). The
malware spreads further and infects more sensors
gradually. Later, few of the infected sensors turn to
the Recovered state, as it can be seen in Figure 17(d)
(white cell). Note that the energy of the recovered
sensors is reduced to 95 in each simulation step.

Figure 18 shows the simulation results of malware
propagation using transition probability of β = 0.6
from the Susceptible state to Infected state. In this
simulation scenario, we maintain other assumptions
the same as the scenario shown in Figure 17 to observe
how the model behaves with the change of transition
probability. As we have seen in Figures 17 and 18, the
malware propagation speed under the transition prob-
ability β = 0.6 is higher compared to the case in which
the transition probability was 0.3, which is expected.
Figures 17 and 18 also shows that the propagation of
malware happens along with the defined neighbours
which is spatially bounded. Both properties of the
malware spread to satisfy the result in Song & Jiang,
2008.

Figure 19 shows how the nodes gradually move
towards the Dead state by consuming the residual
energy in every simulation step. In this case, we con-
sidered the energy of an infected node reduces to 80%
of the original but the nodes in Susceptible and
Recovery state reduce to 99% and 95% of previous
energy. As we can see in Figure 19(a), after simulation
advances with the propagation of malware, the first
infected sensor becomes dead after running out of
energy (black cell). It also proves that if an infected
node does not get patch to move to the recovery state,
it could go to the dead state earlier, because of the
higher cumulative consumption of the residual
energy. The remaining parts of Figure 19(b,c) show

the progression of the dead cells with the simulation
advances. This simulation results also agree with the
results shown in (Song & Jiang, 2008).

Therefore, the simulation results presented above
show that the spread of malware depends on the value
of the parameter β as well as the state of the nodes.
Furthermore, the lifetime of the sensor network
depends on the energy depletion rate in each state of
the nodes.

6. Conclusion

We discussed the use of the DEVS and Cell-DEVS
formalisms for M&S of networking applications. In
this paper, three applications were presented, and
CD++ has been used as the platform for M&S of
these applications. In the first application, we used
cell-DEVS to model a mobile network to study
users’ upload process while they are using either
non-cooperative algorithm or CoMP. The simula-
tion results revealed that the cell-edge users showed
better performance while they were using CoMP
compared to the times that they used the other
algorithm. In the second application, we used
DEVS to model a mobile network that uses the
CoMP method. We have represented different
mobile network components using atomic and
coupled models. We ran some tests to validate the
modelling. In the last application, we presented a
Cell-DEVS model that investigates the behaviour of
malware in a wireless sensor network. Different
simulations were performed, and results were pre-
sented graphically. This model showed how fast a
malware could spread throughout the network. It
also showed how a sensor node could run out of

Figure 16. State transition of sensor nodes.
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Figure 17. The effect of infected cell with β = 0.3 on its neighbours with time steps.

Figure 18. The effect of infected cell with β = 0.6 on its neighbours with time steps.
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energy because of malware propagation in the net-
work. As more nodes became dead, the WSN
became disabled due to the characteristics of
the WSN.

These models showed how DEVS and Cell-DEVS
formalisms could be used to model these kinds of
problems in the wireless networking area. We could
reduce the complexity of the model by applying some
level of simplification, and we implemented the mod-
els using CD++ platform. However, since networking
applications and problems are evolved fast, we need to
design models that are more complex to be able to
study new advanced methods in these areas. The mod-
ular and hierarchal nature of DEVS and Cell-DEVS
gives us this opportunity to build the new features on
the top of the current DEVS and Cell-DEVS models.
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APPENDIX I – FORMAL DEFINITIONS OF DEVS AND CELL-DEVS

Equation 5 formally specifies a DEVS atomic model:

M ¼ X;Y; S; δint; δext; λ; tah i (5)

Where X ¼ p; vð Þ j p�IPorts; v�Xp
� �

is the set of input events, where IPorts reveals the set of input ports, and Xp shows the
set of values for the input ports. Y ¼ p; vð Þ j p�OPorts; v�Yp

� �
is the set of output events, where OPorts reveals the set of

output ports, and Yp shows the set of values for the Output ports. S is the set of sequential states. δint : S ! S is the internal
state transition function. δext : Q� X ! Sis the set of external transition function where Q ¼ s; eð Þ j s�S; 0 � e � ta sð Þf g
and e is the elapsed time since the last transition function. λ ¼ S ! Y is the output function and ta : S ! Rþ

0 [ 1 is the time
advance function (A. G. Wainer, 2009).

According to this definition at any given time, a DEVSmodel is in a states�S and if there is not any external event, it remains
in that state for a lifetime defined by ta sð Þ. When the state lifetime expires (e ¼ ta sð Þ) the model sends the output λ sð Þ(if there
is any output) through the output ports. After that, it performs an internal transition function to select the new state by
δint sð Þ:Based on the definition, a state transition can also happen due to the arrival of an external event. In this case, the
external transition function determines the new state, given by δext s; e; xð Þ where s is the current state, e is the elapsed time
since the last transition and x�X is the external event that has been received. The time advance function ta sð Þ can take any real
value from the defined interval in the definition. It worth to mention that if ta sð Þ ¼ 1, the state is called passive which means
that the atomic model stays in this state until receiving an external event. This situation can be used as a termination condition
as well. In addition, a state with ta sð Þ = 0 is called a transient state and it leads to an instantaneous internal transition. Equation
6 formally specifies a DEVS coupled model (A. G. Wainer, 2009):

CM ¼ <X;Y;D; fMdjd 2 Dg; EIC; EOC; IC; Select > (6)

Where D is the set of components name. Md is a DEVS model. EIC is the set of external input couplings. EOC is the set of

external output couplings. IC is the set of internal couplings. Select is the tiebreaker function in case of simultaneous internal
event among the components of the coupled model (A. G. Wainer, 2009). Figure 20 shows a DEVS model with two levels, one
coupled model (C1) and two atomic models (A1 and A2).

Cell-DEVS is a combination of DEVS and Cellular Automata (CA) with explicit timing delay. It is used to capture the
behaviour of the system of interest that can be represented as cell spaces. In Cell-DEVS, each cell is represented as an atomic
model. In addition, a procedure is defined to connect cells to their neighbouring cells. Each cell has a delay mechanism that
implements the required delay for each state change event. Equation 7 formally specifies a Cell-DEVS atomic model (A. G.
Wainer, 2009):

TDC ¼ X;Y; S;N;Type; d; τ; δint; δext; λ; tah i (7)

WhereN shows the set of input values. d is the delay for the cell. Type is the kind of delay (inertial/transport/other). τ : N ! S
is the local computing function. A Coupled Cell-DEVS model consists of several Cell-DEVS atomic models in a two-
dimensional or three-dimensional cell space. The borders of the cell space can be either wrapped or non-wrapped. In the
latter, the border cells must have special rules defined by the modeller, and in the former, the border cells at the border from
one side of the cell space are considered neighbours to the cells at the border on the opposite side of the cell-space. Equation 8
formally specifies a coupled Cell-DEVS atomic model (A. G. Wainer, 2009):

GCTD ¼ X;Y;Xlist;Ylist; μ;N; m; nf g;C;B;Z; selecth i (8)

Where Xlist is the input-coupling list. Ylist is the output-coupling list. μ is the neighbourhood size. N is the neighbourhood
set. m; nf g 2 N is the size of the cell. C is the cell-space set. B is the set of border cells and Z is the translation function.

These formal approaches enable to prove the correctness and completeness of the simulation models. Errors found during
the simulation can be fixed by analysing the specification, without considering the underlying software system. DEVS and
Cell-DEVS are discrete-event formalisms, providing higher precision and speedups than the discrete-time approaches. DEVS
allows the modeller to formally specify discrete-event systems using modular descriptions. This strategy allows the reuse of
tested models, improving the safety of the simulations and allowing reducing the development times. As it uses a continuous-
time base, precision of the models can be improved while CPU time requirements can be reduced. Higher timing precision
can be obtained without using small discrete time segments (that would increase the number of simulation cycles). The

Out In

C1

EOC IC EIC
A1 A2

InIn Out Out

Figure 20. A DEVS-coupled model.
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formalism is based on sound theoretical grounds, allowing for an abstract design of models that are independent from the
implementation platform. The use of DEVS and Cell-DEVS provides (Farooq et al., 2007):

● A method that allows conducting formal tests.
● Seamless model sharing between different DEVS-based toolkits.
● High-performance execution of the same models in a parallel simulation environment
● Remote execution using client–server services, allowing remote interaction between users.
● The ability to execute the models on a distributed platform.
● The possibility to define models using different techniques interacting within the same environment. This could allow

including non-network entities that affect network operation, providing results that are more realistic, including mobility
and traffic models.

● The potential to automatically deploy models that have been evaluated on the simulation environment into the actual
networking hardware, converting them into the real applications.

APPENDIX II – OVERVIEW OF CD++

As mentioned earlier, the CD++ toolkit provides a framework for programming DEVS models. A Model file is used for
defining the DEVS coupled model hierarchical structure and coupling. A header file is used for defining atomic models as a
class. Ports, variables, and state definitions of an atomic model can be found in this file. Users can implement definitions of
functions such as δint; δextandλ in the CPP file, according to the C++ programming language convention. Therefore, the
behavioural of the systems is presented through the implementation of the atomic models.

Figure 21 shows an example of DEVS models, which includes one coupled model and three atomic models. This model has
two levels: in the first level there is one coupled model (C1, known as the top model), and in the second level there are three

atomic models (A1, A2, and A3). This model has one external input port and two output ports. The external input port is
connected to the input port of A1. The ‘Out1ʹ ports of A2 and A3 are connected to the ‘Output1ʹ and ‘Output2ʹ ports of the C1
coupled model, respectively. The rest of the interconnections can be seen in Figure 21.

Now, let us assume that A1 represents a simple queue behaviour. According to the Figure 21, the A1 atomic model has two
input ports and an output port. A1 keeps the arrival messages (from the ‘In1ʹ port), and it sends them to A2 one by one. To do
so, A2 should send a request message to A1, whenever it is free to process a new message. Figure 22 shows the header file that
defines the A1 atomic model as a class (Queue0). Moreover, Figure 23 presents a simplified behaviour of this atomic model.
Finally, Figure 24 illustrates the structure of the DEVS model.

In Figure 22, we start by defining our desired queue class. We define the required methods such as initFunction,
externalFunction, internalFunction, outputFunction, etc., in the protected zone. Then, we define the required ports,
variables, and the needed states in the private zone. We use these states to implement the behaviour of the atomic
model in the CPP file. According to the DEVS model in Figure 21, our atomic model (A1) has two input ports (In1
and Req) and one output port (out1). We use a variable (processTime) to show how much time this atomic model
requires to process an input message. This parameter can be initialised either in initFunction, or it can be initialised by
a value that CPP file will read from the Model file (please check the constructor method in Figure 23 and the A1
definition in Figure 24).

Figure 23 shows a CPP file that represents the behaviour of our queue atomic model. Before we start with the detail
of Figure 23, we present a brief overview on the way that a CPP file works. In the CPP file, we usually implement the
body of the defined methods in the Header file including but not limited to constructor, initialisation, external,
internal, and output functions. The constructor method creates a sample of the desired atomic model. We use the
initialisation function (“initFunction”) to assign a value to the variables that required to be initialised at the beginning
of the simulation. The external function of an atomic model is responsible to deal with the external messages that
arrive at the atomic model. The internal function deals with the required actions that we need to take at each state. If
we do not deactivate an atomic model in the external, internal, or initialisation functions, the controller goes to the
output function after each execution of the external, internal, or initialisation functions. When there is no external
message and the atomic model is active, the controller moves between the output and internal functions repetitively.
Once an external message arrives, the controller calls the external function. We can use “passivate” method in the
external, internal, or initialisation functions to deactivate an atomic model until it receives the next external message.

A2A1

A3

Input Out1 Output1

Output2
In1

In2

Out2In1
Out1

In1

Out1
C1

Req

Figure 21. A coupled model with three atomic models.
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We can use “holdIn” method in these functions to generate the desired delay before the controller calls the output
function.

In Figure 23, in the constructor method, we define the ports and we also read the corresponding Model file (in Figure 24) to
initialise the required parameters. Then, we use the initFunction to assign a value to the variables that required to be
initialised. Moreover, we make sure that the queue is empty at the beginning of the simulation. Finally, by using the “passivate
()” method, we make the atomic model inactive but ready to be used in the simulation. In the “externalFunction”, we make
decision for the received messages according to their arrival port as well as the status of the queue. Here, we determine the
next state of the atomic model and we may change the queue size based on the received message. We use “outputFunction” to
send out the output messages through desired ports. In our case, if the atomic model state is “Pop” and the “Request” value is
1, we send the front element of the queue to the A2 through the ‘out1ʹ port. In the “internalFunction”, we deal with the
different states that the A1 atomic model can have, and we program them to make sure this atomic model represents our
desired queue behaviour.

#ifndef __QUEUE0_H
#define __QUEUE0_H

#include "atomic.h"  // class Atomic
#include "string.h"
#include "list.h"

class Queue0 : public Atomic {
public:

Queue0( const std::string &name = "Queue0" ); //Default constructor
virtual std::string className() const { return "Queue0"; }
~Queue0() {};

protected:
Model &initFunction();
Model &externalFunction( const ExternalMessage & );
Model &internalFunction( const InternalMessage & );
Model &outputFunction( const InternalMessage & );

private:
const Port &In1,&Req;
Port &Out1;
Time processTime;
typedef list<Value> ElementList ;
ElementList elements;
int Request;
int Qlen;
enum State{

Idle,       //initial state
Push,
Pop,

};
State state;

};

#endif   //__QUEUE0_H

Figure 22. The header file of the DEVS atomic model (A1) in.Figure 21
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#include "Queue0.h"      // class Queue
#include "message.h"    // class ExternalMessage, InternalMessage
#include <iostream>
#include <fstream>

Queue0::Queue0( const string &name ) : 
Atomic( name ), 
In1( addInputPort( "In1" ) ),
Req( addInputPort( "Req" ) ) ,
Out1( addInputPort( "Out1" ) ),
{

string processTimeS(MainSimulator::Instance().getParameter(description(),
"processTime"));
if (processTimeS!="") processTime = Time(processTimeS);

}

Model &Queue0::initFunction(){
Request = 0;
Qlen = 0;
state = Idle;
elements.erase( elements.begin(), elements.end() ) ;
passivate();
return *this ;

}

Model &Queue0::externalFunction( const ExternalMessage &msg ){
if( msg.port() == In1 ) // an input from the external input port{

elements.push_back( msg.value() ) ; //Store Input value in Queue
state = Push;
Qlen++;
holdIn( Atomic::active, ProcessTime);

}
else if ( msg.port() == Req && elements.size() > 0){

Request = 1;
state = Pop;
holdIn( Atomic::active, ProcessTime);

}
else if ( msg.port() == Req  && elements.size() == 0){

Request = 1; //Although Queue is empty but A2 is waiting for input.
passivate(); // If the queue is empty then passivate.

}
return *this;

}

Model &Queue0::outputFunction( const InternalMessage &msg ){
if ((state == Pop) && (Request == 1)){

sendOutput( msg.time(), Out1, elements.front());  
}
return *this ;

}

Model &Queue0::internalFunction( const InternalMessage & ){
switch (state){

case Idle:
if (Request == 1) {state = Pop;}
else {passivate();}
break;

case Push:
state = Idle;
break;

case Pop:
elements.pop_front();
Qlen--;
Request = 0;
state = Idle;
break;

}
return *this;

}

Figure 23. The CPP file of the DEVS atomic model (A1) in Figure 21.
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Figure 24 presents the Model file of the DEVS model in Figure 21. This file is used to define the structure of the DEVS
model. In the Model file, we start with defining the top model (which is C1 in Figure 21). We mention all the components and
the interconnection in the level one of the DEVS model. Then, we continue with defining the detail of the components of the
level two. This process is repeated until we define all the components of various levels in order.

[top]
components : A1@queue0   A2@relatedClass1   A3@relatedClass2

in: Input
out: Output1  Output2 

Link: Input    In1@A1
Link: Out1@A1  In1@A2
Link: Out2@A1  In1@A3
Link: Out2@A2  In2@A3
Link: Out1@A2  Output1
Link: Out1@A3  Output2

[A1]
processTime : 00:00:00:10   #pass values for the parameters

[A2]
…

[A3]
…

Figure 24. The model file of the DEVS model (C1) in Figure 21.
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